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We study the statistical properties of the complex generalization of Wigner time delay τW for subunitary
wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re½τW �
distribution function for a system with uniform absorption strength η is equal to the fraction of scattering
matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of
microwave graphs with either one or two scattering channels and showing broken time-reversal invariance
and variable uniform attenuation. The experimental results are in excellent agreement with the developed
theory. The tails of the distributions of both real and imaginary time delay are measured and are also found
to agree with theory. The results are applicable to any practical realization of a wave-chaotic scattering
system in the short-wavelength limit, including quantum wires and dots, acoustic and electromagnetic
resonators, and quantum graphs.
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Introduction.—In this Letter we are concerned with the
general scattering properties of complex systems, namely
finite-size wave systems with one or more channels
connected to asymptotic states outside of the scattering
domain. The scattering system is complex in the sense that
classical ray trajectories will undergo chaotic scattering
when propagating inside the closed system. We focus on
the properties of the energy-dependent scattering matrix of
the system, defined via the linear relationship between the
outgoing jψouti and incoming wave amplitudes jψ ini on
the M coupled channels as jψouti ¼ Sjψ ini. In the short-
wavelength limit the complexM ×M scatteringmatrix SðEÞ
is a strongly fluctuating function of energy E (or, equiv-
alently, the frequency ω) of the incoming waves, as well
as specific system details. Those parts of the fluctuations
that reflect long-time behavior are controlled by the high
density of S-matrix poles, or resonances, having their origin
at eigenfrequencies (modes) of closed counterparts of the
scattering systems. At energy scales comparable to the mean
separation Δ between the neighboring eigenfrequencies, the
properties of the scattering matrix are largely universal and
depend on very few system-specific parameters. The ensuing
statistical characteristics of the S-matrix have been very
successfully studied theoretically over the past 3 decades
using methods of random matrix theory (RMT) [1–9].
The scattering matrix can be characterized by the

distribution of poles and associated zeros in the complex
energy plane, which are most clearly seen when one
addresses its determinant. In the unitary (zero loss) limit,
the poles and zeros of the determinant form complex

conjugate pairs across the real axis in the energy plane.
In the presence of any loss, the poles and zeros are no longer
complex conjugates, but if the loss is spatially uniform their
positions are still simply related by a uniform shift. This is no
longer the case for spatially localized losses, with poles and
zeros migrating in a complicated way to new locations,
subject to certain constraints. For a passive lossy system the
poles always remain in the lower half of the complex energy
plane, while the zeros can freely move between the two sides
of the real axis. Among other things, rising recent interest
in characterizing S-matrix complex zeros, as well as their
manifestation in physical observables, is strongly motivated
by the phenomenon of coherent perfect absorption [10], see
[11–15] and references therein.
One quantity that is closely related to resonances is

known to be the Wigner time delay τW. In its traditional
definition [16,17] for unitary, flux conserving scattering
systems the Wigner time delay τW is a real positive quantity
measuring how long an excitation lingers in the scattering
region before leaving through one of the M channels.
Fluctuations of τW and related quantities was the subject of
a large number of theoretical works in the RMT context
[18–27], and more recently [28–32], as well in a semi-
classical context in [33–36] and references therein. In
particular, for the one- and two-channel cases most relevant
to this Letter the distribution of τW is known explicitly for
all symmetry classes, β ¼ 1, 2, and 4 [24].
Experimental work on time delays in wave-chaotic

billiard systems was pioneered by Doron, Smilansky, and
Frenkel in microwave billiards with uniform absorption [37],
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where the relation between the Wigner time delays and the
unitary deficit of the S-matrix was explored. Later experi-
ments on time delay statistics were made by Genack and co-
workers, who studied microwave pulse delay times through
randomized dielectric scatterers [38,39]. The quantity stud-
ied in that case is a type of partial time delay associated with
the complex transmission amplitude between channels [40],
somewhat different from the Wigner time delay. In particu-
lar, contributions to the transmission time delay due to poles
and zeros of the off-diagonal S-matrix entries have been
identified [41].
Despite strong interest in the standard Wigner time

delay over the years, its use for characterizing statistics
of S-matrix poles and zeros beyond the regime of well-
resolved (isolated) resonances has been always problem-
atic. In our recent article [15] we noticed that in the
presence of losses one may propose a complex-valued
generalization of the Wigner time delay τW (CWTD) that
reflects the phase and amplitude variation of the scattering
matrix with energy. Subsequently, we developed a method,
both experimentally and theoretically, for exploiting
CWTD for identifying the locations of individual S-matrix
poles En and zeros zn in the complex energy plane. The
method has been implemented in the regime of well-
resolved, isolated resonances, for systems with both local-
ized and uniform sources of absorption. However, no
statistical characterization of CWTD for large numbers
of modes has been attempted.
To this end it is worth mentioning that one of the oldest

yet useful facts about the standard Wigner time delay is that
the mean of the τW distribution is simply related to the
Heisenberg time τH of the system, hτWi ¼ 2πℏ=MΔ ≔
τH=M [42]. As such it is absolutely insensitive to the type
of dynamics, chaotic vs integrable. More recently this

property was put in a much wider context and tested
experimentally [43].
In this Letter we reveal that the mean value of Re½τW � of

CWTD is, in striking contrast to the flux-conserving case, a
much richer object and can be used to obtain nontrivial
information about the distribution of the imaginary part of
the poles of the S-matrix. For this we develop the corre-
sponding theory for the mean values and compare to the
experimentally observed evolution of distributions of real
and imaginary parts of CWTD with uniform loss variation.
Theory.—The appropriate theoretical framework for our

analysis is the so-called effective Hamiltonian formalism
for wave-chaotic scattering [3,4,7,9,44]. It starts with
defining an N × N self-adjoint matrix Hamiltonian H
whose real eigenvalues are associated with eigenfrequen-
cies of the closed system. Further defining W to be an
N ×M matrix of coupling elements between the N modes
ofH and theM scattering channels, one can in the standard
way build the unitaryM ×M scattering matrix SðEÞ. In this
approach the S-matrix poles En ¼ En − iΓn (with Γn > 0)
are complex eigenvalues of the non-Hermitian effective
Hamiltonian matrix Heff ¼ H − iΓW ≠ H†

eff , where we
defined ΓW ¼ πWW†. A standard way of incorporating
the uniform absorption with strength η is to replace
E → Eþ iη making S-matrix subunitary, such that its
determinant det SðEþ iηÞ is given by the ratio

det½E −H þ iðη − ΓWÞ�
det½E −H þ iðηþ ΓWÞ�

¼
YN
n¼1

Eþ iη − E�
n

Eþ iη − En
; ð1Þ

Using the above expression, the Wigner time delay can
be very naturally extended to scattering systems with
uniform absorption as suggested in [15] by defining

τWðE; ηÞ ≔
−i
M

∂
∂E log det SðEþ iηÞ ¼ ReτWðE; ηÞ þ iImτWðE; ηÞ; ð2Þ

ReτWðE; ηÞ ¼
1

M

XN
n¼1

�
Γn þ η

ðE − EnÞ2 þ ðΓn þ ηÞ2 −
η − Γn

ðE − EnÞ2 þ ðΓn − ηÞ2
�
; ð3Þ

ImτWðE; ηÞ ¼ −
1

M

XN
n¼1

�
4ηΓnðE − EnÞ

½ðE − EnÞ2 þ ðΓn − ηÞ2�½ðE − EnÞ2 þ ðΓn þ ηÞ2�
�
: ð4Þ

For a wave-chaotic system the set of parameters Γn, En
(known as the resonance widths and positions, respec-
tively) is generically random. Namely, even minute changes
in microscopic shape characteristics of the system will
drastically change the particular arrangement of S-matrix
poles in the complex plane in systems that are otherwise
macroscopically indistinguishable. To study the associated
statistics of CWTD most efficiently one may invoke the

notion of an ensemble of such systems. As a result, both
Re½τW � and Im½τW � at a given energy will be distributed
over a wide range of values. Alternatively, even in a single
wave-chaotic system the CWTD will display considerable
statistical fluctuations when sampled over an ensemble of
different mesoscopic energy intervals; see below and the
Supplemental Material [45] for more detailed discussion.
Invoking the notion of spectral ergodicity, one expects that
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in wave-chaotic systems the two types of ensembles (i.e.,
those produced by perturbations to the system at fixed
energy vs those created by considering various energy
windows) should be equivalent.
Consider the mean value of the CWTD in systems with

uniform absorption η > 0. In contrast to the case of flux-
conserving systems the mean of Re½τW � becomes highly
nontrivial as it counts the number of S-matrix poles
whose widths exceed the uniform absorption strength
value. In other words,

hRe½τWðE; ηÞ�iE
τH=M

¼ no:of½Γn > η such thatEn is inside IE�
total no: of resonances inside IE

;

ð5Þ

where IE is a mesoscopic energy interval that is much larger
than the mean mode spacing Δ, absorption η, and the
widths Γn, but small enough so that the interval has a
roughly constant mode density. To prove this, perform an
energy average of Eq. (3):

hRe½τWðE; ηÞ�iE

≈
π=2
MjIj

XN
n¼1

��
sign

�
ER − En

ηþ Γn

�
− sign

�
EL − En

ηþ Γn

��

−
�
sign

�
ER − En

η − Γn

�
− sign

�
EL − En

η − Γn

���

¼ 2π

MjIj
XN
n¼1

θðΓn − ηÞ; ð6Þ

where jIj ≔ jER − ELj is the mesoscopic energy interval
and the step function θðxÞ ¼ 1 for x > 0 and θðxÞ ¼ 0
otherwise. Under the assumption that no. of ðEn ∈ IÞ ≈
jIj=Δ we arrive at Eq. (5). Alternatively, invoking ergo-
dicity, one may use the RMT for analyzing the mean
CWTD, which independently confirms Eq. (5). Such
analysis also predicts that hIm½τWðE; ηÞiE ¼ 0, indepen-
dent of η. Details of these calculations are presented in
the Supplemental Material, Sec. I [45]. The distribution
of imaginary parts Γn of the S-matrix poles relevant for
Eq. (5) have been examined theoretically in the RMT
framework [50–53] and experimentally [54–59] by a
number of groups.
Experiment.—We test our theory by using an ensemble

of tetrahedral microwave graphs with either M ¼ 1 or
M ¼ 2 channels coupled to the outside world. We focus on
experiments involving microwave graphs [60–63] for a
number of reasons: one can precisely vary the uniform loss
and the lumped loss over a wide range; one can work in
either the time-reversal invariant (TRI) or broken TRI
regimes; one can gather very good statistics with a large
ensemble of graphs; and one can vary both the (energy-
independent) mode density and loss to go from the limit of

isolated modes to strongly overlapping modes. The dis-
advantages of graphs for statistical studies include signifi-
cant reflections at nodes, which can create trapped modes
on the bonds [64], and the appearance of short periodic
orbits in cyclic graphs [65].
The microwave graphs are constructed with coaxial

cables with center conductors of diameter 0.036 in.
(0.92 mm) made with silver-plated copper-clad steel and
outer shield of diameter 0.117 in. (2.98 mm) made with a
copper-tin composite. An ensemble of microwave graphs is
created by choosing six out of nine cables with different
incommensurate lengths [for a total of ð9

6
Þ ¼ 84 realiza-

tions] and creating uniquely different tetrahedral graphs.
The scattering matrix of the one- and two-port graphs are
measured with a calibrated Agilent PNA-X N5242A
Network Analyzer (see insets of Fig. 3) over the frequency
range from 1 to 12.4 GHz, which includes about 250 modes
in a typical realization of the ensemble. The graphs are
measured with a finite coupling strength ga, which varies
from 1.06 to 1.80 as a function of frequency, where
ga ¼ ð2=TaÞ − 1 and Ta ¼ 1 − jSradj2 is the transparency
of the graph to the scattering channel a determined by
the value of the radiation S-matrix. [66] The effects of the
coupling are then removed through application of the
random coupling model (RCM) normalization process
[67–70]. This is equivalent to creating an ensemble of
data with perfect coupling, ga ¼ 1 and Ta ¼ 1 for all
frequencies, ports, and realizations.

(a)

(b)

FIG. 1. Evolution of the PDF of measured Re½τW � with
increasing uniform attenuation (η̃) from an ensemble of two-port
(M ¼ 2) tetrahedral microwave graphs with broken TRI. The
main figure and inset (a) show the distributions of the positive and
negative Re½τW � on a log-log scale for three values of uniform
attenuation, respectively. Reference lines characterizing power-
law behavior are added to the tails. Inset (b) shows the
distributions of Re½τW � on a linear scale for the same measured
data.
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TRI was broken in the graph by means of one of four
different microwave circulators [71] operating in partially
overlapping frequency ranges going from 1 to 12.4 GHz
(see Supplemental Material, Sec. VI [45]). The CWTD τW
is calculated using the RCM-normalized scattering matrix S
as in Eq. (2), and the statistics of the real and imaginary
parts are compiled based on realization averaging and
frequency averaging in a given frequency band. The overall
level of attenuation was varied by adding identical fixed
microwave attenuators to each of the six bonds of the
tetrahedral graphs [72]. The attenuator values chosen were
0.5, 1, and 2 dB.
Comparison of theory and experiments.—Our prior work

showed that CWTD varied systematically as a function of
energy or frequency for an isolated mode of a microwave
graph [15]. The real and imaginary parts of τW take on both
positive and negative values. We now consider an ensemble
of graphs and examine the distribution of these values taken
over many realizations and modes. We first examine the
evolution of the probability density function (PDF) of
Re½τW � [Fig. 1(b)] and Im½τW � (inset of Fig. 2) with
increasing uniform (normalized) attenuation η̃. The uni-
form attenuation is quantified from the experiment as
η̃ ¼ ð2π=ΔÞη ¼ 4πα, where α ¼ δf3 dB=Δf, δf3 dB is the
typical 3-dB bandwidth of the modes and Δf is the mean
frequency spacing of the modes [73].
Figure 1 shows that as the uniform attenuation (η̃) of the

graphs increases, the peak of the Re½τW � distribution shifts
to lower values. Furthermore, Fig. 1(a) shows that Re½τW �
acquires more negative values as the attenuation increases.

Figure 1 demonstrates that the PDF of Re½τW � exhibits
power-law tails on both the negative and positive sides,
respectively. The positive-side PDFs shown in Fig. 1 have
different power-law behaviors for different ranges of
Re½τW �, which is further explained theoretically in the
Supplemental Material, Sec. II [45]. Figure 2 shows the
PDF of jIm½τW �j on both linear and log-log scales for
the same values of uniform attenuation. We find that the
Im½τW � distribution is symmetric about zero to very good
approximation. Once again a power-law behavior of the
tails of the distribution is evident.
Figure 3 shows a plot of the Mean(Re½τW �) vs uniform

attenuation (η̃) in ensembles of microwave graphs for both

Im / H

P
D
F

FIG. 2. Evolution of the PDF of measured Im½τW � with
increasing uniform attenuation (η̃) from an ensemble of two-port
(M ¼ 2) tetrahedral microwave graph data with broken TRI. The
main figure shows a log-log plot of the PDF vs jIm½τW�j for three
values of uniform attenuation. A reference line is added to
characterize the power-law tail. The inset shows the distributions
of Im½τW � on a linear scale for the same measured data.

(a)

(b)

FIG. 3. Mean of Re½τW � as a function of uniform attenuation η̃
evaluated using tetrahedral microwave graph data with broken
TRI for both one- and two-port configurations. (a) One-port
experimental data (black circles) compared with theory (red line).
(b) Two-port experimental data (black circles) compared with
theory (red line). A detailed discussion about the estimated error
bars (blue) can be found in the Supplemental Material, Sec. V
[45]. The insets show the mean of the Im½τW � (green circles) as a
function of uniform attenuation η̃ evaluated using the same
datasets for the one- and two-port configurations, respectively.
Other insets show the experimental configurations.
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(a)M ¼ 1 and (b)M ¼ 2 ports. The black circles represent
the data taken on an ensemble of microwave graphs with
constant η̃. The red line is an evaluation of the relation
Eq. (5), based on the analytical prediction for the PðΓnÞ
distribution for the (a) M ¼ 1 and (b) M ¼ 2 cases, both
with perfect coupling (g ¼ 1) [4,51]. Note that the dis-
tribution of Γn for M ¼ 1 is very different from the
multiports cases (see the Supplemental Material, Fig. S3
[45]). Nevertheless there is excellent agreement between
data and theory over the entire experimentally accessible
range of uniform attenuation values for both one-port
and two-port graphs. We can conclude that the theoretical
prediction put forward in Eq. (5) is in agreement with
experimental data. A more detailed comparison with
random matrix based computations over a broad range
of uniform attenuation is presented in the Supplemental
Material, Sec. IV [45].
We have also examined the experimentally obtained

statistics of Im½τW �. As seen in the insets of Figs. 3(a)
and 3(b), we find that the mean of Im½τW � is consistent with
theoretically predicted zero value for all levels of uniform
attenuation in the graphs.
We now turn out attention back to the power-law tails for

the distributions of Re½τW � and Im½τW � presented in Figs. 1
and 2. By examining the statistics of large values of Re½τW �
that appear in Eq. (3), one finds that the tails of the PDFs
will behave as PðRe½τW �Þ ∝ 1=Re½τW �3, on both the pos-
itive and negative sides, as long as MRe½τW �=τH ≫ 1=η̃
(details discussed in the Supplemental Material, Sec. II
[45]). This behavior is clearly observed on the negative
side of the PDF, as shown in Fig. 1(a). The tail on the
positive side is more complicated due to a second power-
law expected in the intermediate range: PðRe½τW �Þ ∝
1=Re½τW �4 when 1 ≪ MRe½τW �=τH ≪ 1=η̃. Unfortunately
we were not able to obtain such data within this range
(requiring very low attenuation η̃) experimentally, but a
narrow range of Re½τW �=τH between approximately 0.3 and
1 in Fig. 1 shows a steeper power-law behavior, consistent
with PðRe½τW �Þ ∝ 1=Re½τW �4, giving way to a more shal-
low slope at larger values of Re½τW �=τH, consistent with the
theory. As seen in Fig. 2, the distribution of the imaginary
part of the time delay has a wide range with a power law
PðjIm½τW �jÞ ∝ 1=jIm½τW �j3, consistent with our theoretical
prediction.
Discussion.—We demonstrated that the CWTD is an

experimentally accessible object sensitive to the statistics of
S-matrix poles in the complex energy or frequency plane.
In addition to the experimental results discussed above, we
have also employed RMT, as well as associated numerical
simulations, for studying the distribution of the CWTD.
Through these simulations (Supplemental Material, Sec. IV
[45]) we can explore much smaller, and much larger,
values of uniform attenuation than can be achieved in
the experiment. These simulations show agreement with all
major predictions of the RMT-based theory, including the

existence of an intermediate power law on the positive side
of the PðRe½τW �Þ distribution for low-loss systems. Finally
we note that all results in Eqs. (1)–(5) are insensitive to the
presence or absence of TRI. The power-law tail predictions
are also insensitive to TRI, as shown in the Supplemental
Material, Sec. II [45].
Conclusions.—We have experimentally verified the

theoretical prediction that the mean value of the Re½τW �
for a system with uniform absorption strength η counts the
fraction of scattering matrix poles with imaginary parts
exceeding η. This opens a conceptually new opportunity
to address resonance distributions experimentally, as we
convincingly demonstrated with an ensemble of microwave
graphs with either one or two scattering channels, and
showing broken TRI and variable uniform attenuation. The
tails of the distributions of both real and imaginary time
delay are found to agree with theory.
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Here we provide the reader with some additional details for the calculations described in the text of the Letter.
Section I offers a proof of Eq. (5) in the main text. Section II discusses the tails of the distribution functions of the
complex Wigner time delay. Section III discusses the convention that we employ for the evolution of the phase of the
S-matrix with frequency. In Section IV we discuss the use of random matrix computations to examine the distribution
functions of the complex Wigner time delay as a function of uniform attenuation. Section V has a discussion of how
the loss parameter of the graph is determined in the experiment, and how to estimate the error bars in Fig. 3 of the
main text. Section VI shows quantitative time-reversal invariance breaking effects produced by the circulator in the
microwave graph system.

I. COUNTING RESONANCE WIDTHS VIA COMPLEX WIGNER TIME DELAYS

Denote by H the N ×N Hamiltonian of the closed system, by W the N ×M matrix of coupling elements between
the N modes of H and the M scattering channels. The total S matrix has the form:

S(E) = 1M − 2πiW †
1

E −H + iΓW
W where ΓW = πWW † (S1)

Note that the S-matrix poles En = En − iΓn (with Γn > 0) are eigenvalues of H − iΓW .
In the presence of uniform absorption with strength η, the S matrix is evaluated at complex energy S(E + iη) :=

Sη(E). The determinant of Sη(E) is then:

detSη(E) := detS(E + iη) (S2)

=
det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
(S3)

=

N∏
n=1

E + iη − E∗n
E + iη − En

, (S4)

Extending the definition of the Wigner time delay to uniformly absorbing systems as

τW(E; η) :=
−i
M

∂

∂E
log detSη(E) (S5)

we now have a complex quantity

τW(E; η) = − i

M

N∑
n=1

(
1

E + iη − En − iΓn
− 1

E + iη − En + iΓn

)
(S6)

whose real and imaginary part is given by:

Re τW(E; η) =
1

M

N∑
n=1

[
Γn + η

(E − En)2 + (Γn + η)2
− η − Γn

(E − En)2 + (Γn − η)2

]
, (S7)

Im τW(E; η) = − 1

M

N∑
n=1

[
4ηΓn(E − En)

[(E − En)2 + (Γn − η)2][(E − En)2 + (Γn + η)2]

]
(S8)



2

When the S-matrix is unitary, i.e. η = 0, the time delay is purely real and reduces to conventional Wigner time
delay:

τW(E; 0) =
1

M

N∑
n=1

2Γn
(E − En)2 + Γ2

n

:= τW(E) (S9)

All the equations above are valid for arbitrary η. There are two characteristic energy scales in the system for
energies around a value E. First is the microscopic one, the mean spacing between En in the ‘closed’ counterpart of

our scattering system ∆ = 1/(Nν(E)) where ν(E) = 1
N 〈
∑N
n=1 δ(E −En)〉 is the mean density of resonance positions

(in the case of Random Matrix Theory (RMT) the latter is the Wigner semicircle ν(E) = 1
2π

√
4− E2). A second

scale J is macroscopic and reflects a characteristic scale on which the mean density substantially changes (in RMT
it is simply the width of the semicircle, J ∼ 1). We will also introduce a useful notion of mesoscopic energy intervals
IE defined by EL < E < ER. Those are intervals with the length |I| := |ER − EL| satisfying ∆ � |I| � J . In
other words, they contain a lot of resonances inside, but the density of those resonances along the real axis can be
assumed to be constant. Correspondingly, we will introduce the notion of the mesoscopic energy average, defined for
any energy-dependent function f(E) as

〈f(E)〉E =
1

|I|

∫ ER

EL

f(E) dE (S10)

We will be interested in situations when both the typical resonance widths Γn and the absorption parameter η are
of the order of the microscopic scale ∆ (which does not necessarily mean that the resonances are isolated: some Γn
can be several times larger than ∆, but they are considered to be always smaller than any mesoscopic scale). The
above situation is always typical as long as the number of open channels M is of the order of unity (M = 1 and M = 2
for example). In such a situation no more than M (out of N) resonances can violate the above condition.

Our main statement is the following: under the above assumptions the mesoscopic energy average of Re[τW(E; η)]
is given by

〈Re[τW(E; η)]〉E =
2π

M∆
× Prob(resonance widths > η) (S11)

where we defined

Prob(resonance widths > η) :=
#[Γn > η such that En is inside IE ]

total # resonances inside IE

To verify the above statement we consider the integral:∫ ER

EL

δn
(E − En)2 + δ2

n

dE = sign(δn)

∫ (ER−En)/|δn|

(EL−En)/|δn|

dx

x2 + 1
(S12)

= sign(δn)

{
arctan

(
ER − En
|δn|

)
− arctan

(
EL − En
|δn|

)}
We need to apply it to the right-hand side of Eq. (S7) where δn = η ± Γn. We see that for the overwhelming

majority of the summation index n = 1, 2, . . . , N there simultaneously holds two strong inequalities

|ER − En|
|δn|

� 1 and
|EL − En|
|δn|

� 1.

Indeed, those inequalities can be violated only in the vicinity of the ends of the mesosocopic interval, i.e. when
|ER, L − En| ∼ ∆. The number of such terms is clearly of the order ∆/|I| which is a small parameter in the
mesoscopic case. Neglecting those cases, we always can consider the arguments of arctan to be large in absolute value,
hence to use arctan(a) ≈ π

2 sign(a)− 1
a + . . . . The contribution of subleading terms can be estimated separately (and

indeed shown to be small, this time as ∆/J), and the leading terms give:

〈Re[τW(E; η)]〉E ≈
π/2

M |I|

N∑
n=1

{[
sign

(
ER − En
η + Γn

)
− sign

(
EL − En
η + Γn

)]
−
[
sign

(
ER − En
η − Γn

)
− sign

(
EL − En
η − Γn

)]}
(S13)



3

It is now evident that if En is outside of the mesoscopic interval (that is En < EL < ER or En > ER > EL) the
corresponding terms in the sum (S13) vanish, whereas inside the interval (for EL < En < ER) remembering η+Γn > 0
we see the corresponding terms in the summand are equal to 2(1− sign(η − Γn)) = 4θ(Γn − η) where we introduced
the step function θ(x) = 1 for x > 0 and θ(x) = 0 otherwise.

〈Re[τW(E; η)]〉E ≈
2π

M |I|

N∑
n=1

θ(Γn − η) (S14)

Finally, remembering that under our assumptions #(En ∈ I) ≈ |I|/∆ we arrive at the statement Eq. (5) in the main
text.

Remarks: The mesoscopic energy average is defined in a given system and does not involve any ensemble average.
Actually, we separately proved that if one employs the RMT ensemble average (which we denote with the bar below)
instead of the mesoscopic energy average the relation Eq. (5) holds even if we use τW(E; η) rather than Re[τW(E; η)],
namely:

τW(E; η) =
2π

M∆

∫ ∞
η̃

ρ
(M)
β (y) dy (S15)

where η̃ = 2πη/∆ and ρ
(M)
β (y) is the probability density of scaled resonance widths yn = 2π|Γn|/∆. We see that is

exactly equivalent to mesoscopic energy averaging. This means that the mesoscopic average of Im[τW(E; η)] should
be parametrically smaller than for Re[τW(E; η)], and tend to zero when the length of the mesoscopic interval formally
tends to infinity.

Thus, one can compare the result to known RMT expressions. In particular, for β = 2 and general two-port system
one has [1–3]:

ρ
(M=2)
β=2 (y) =

e−yg1 − e−yg2
g1 − g2

(
g1g2φ(y)− (g1 + g2)

dφ

dy
+
d2φ

dy2

)
(S16)

where we denoted φ(y) = sinh y
y and introduced coupling constants g1 > 1, g2 > 1 are determined from the mean

(ensemble-averaged) scattering matrix which is in that model diagonal Sab = δabSaa. Namely:

|Sab|2 =
ga − 1

ga + 1
(S17)

Closed channel a corresponds to ga →∞, perfect coupling to ga = 1. If two channels are equivalent: g1 = g2 = g we
have a more compact formula:

ρ
(M=2)
β=2 (y) = y

d2

dy2

(
e−ygφ(y)

)
(S18)

Similar, but more complicated (still explicit, but in terms of 3-fold integrals) expressions are available for β = 1,
see [4]. For a single-channel GOE system a much simpler explicit formula for the resonance density has been recently
derived [5], with only one-fold integrals involved.

II. STATISTICAL DISTRIBUTION OF COMPLEX WIGNER TIME DELAYS: TAILS

Using the standard resonance representation for the unitary time delay (S9) one can describes mechanisms [2]
responsible for the formation of various regimes in the far tail of the probability density for normalized Wigner time
delays tw = ∆

2π τW. Here we provide a similar consideration for the normalized real part: t̃w = M ∆
2πRe[τW] in the

presence of a uniform absorption η > 0. Inspection of the representation Eq. (S7) makes it clear that anomalously
high values of the time delays happen when (i)) the observation energy value E is anomalously close to En and
simultaneously (ii)) the resonance widths Γn comes anomalously close to the absorption value η, that is Γn − η � η.
In such an event the second term in Eq. (S7) is dominant, and therefore a faithful model for the tail formation can
be obtained by considering the following approximation:

t̃w ≈
∆

2π

Γn − η
(E − En)2 + (Γn − η)2

≡ y − η̃
x2 + (y − η̃)2

(S19)
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where the scaled resonance widths y = 2π
∆ Γn is distributed with the probability density ρ

(M)
β (y) and the variable

x = 2π
∆ (E − En) can be considered for our purposes as uniformly distributed in the interval [−a, a] where a is any

constant of the order of unity. We will take a = 1 for simplicity. Using the symmetry x→ −x and introducing w = x2

one can write the probability density P(t̃w) in this approximation as

P(t̃w) =

∫ ∞
0

ρ
(M)
β (y) dy

∫ 1

0

δ

(
t̃w −

y − η̃
w + (y − η̃)2

)
dw√
w

(S20)

Solving the δ-constraint we find that w = (y − η̃)
(

1
t̃w
− (y − η̃)

)
. Due to the constraint w > 0 we see that this

implies that the integral over x is nonzero only for y in the range η̃ < y < η̃ + 1
t̃w

for the right tail values t̃w > 0,

whereas for the left tail t̃w < −η̃−1 we have η̃ + 1
t̃w
< y < η̃. On the other hand it is easy to see that the upper limit

constraint w < 1 is immaterial if we are interested in the tail t̃w � 1, and can be replaced with w <∞. Performing
the integration over w gives

P(t̃w) =
1

t̃2w

∫ η̃+ 1
t̃w

η̃

ρ
(M)
β (y)

y − η̃√
(y − η̃)( 1

t̃w
− (y − η̃))

dy (S21)

and introducing v = (y − η̃)t̃w we finally get the right tail

≡ 1

t̃3w

∫ 1

0

ρ
(M)
β

(
v

t̃w
+ η̃

)√
v

1− v
dv (S22)

We see that the following two situations are possible. First (using
∫ 1

0

√
v

1−v dv = π
2 ) we see that for any η̃ > 0 the

most distant right tail has a universal exponent (for any β) given by

P(t̃w) ≈ π

2

ρ
(M)
β (η̃)

t̃3w
, t̃w �

1

η̃
(S23)

However, if absorption is small: η̃ � 1 then there exists another tail regime: 1� t̃w � 1
η̃ where

P(t̃w) ≈ 1

t̃3w

∫ 1

0

ρ
(M)
β

(
v

t̃w

)√
v

1− v
dv, (S24)

and finally using that for small argument ρ
(M)
β (y � 1) ∼ const y

Mβ
2 −1 we arrive at the intermediate tail:

P(t̃w) ≈ const t̃
−Mβ2 −2
w , 1� t̃w �

1

η̃
(S25)

In fact this tail is exactly the same as that derived in [2, 6] for η̃ = 0. Note that for the M = 2 port, β = 2 data
shown in Fig. 1 of the main text, the power-law of the intermediate tail is expected to be P(t̃w) ∝ t̃−4

w .
Finally, for negative time delay it is easy to show that the far tail for t̃w < −η̃−1 is given by the same result (S23),

with t̃w → |t̃w|, and this is the only asymptotic regime on the left (t̃w < 0).
Now we study the far tails of the Jw = −M Im[τW]/τH which in the same approximation can be extracted from

(S8) as

Jw ≈
4η̃yx

[x2 + (y − η̃)2][x2 + 4η̃2]
≈ yx

η̃[x2 + (y − η̃)2]
(S26)

where we used that the far tail values |Jw| � 1/η̃ come when x� η̃. Hence we also can safely consider −∞ < x <∞
and write the probability density P(t̃w) in this approximation as

P
(
|Jw| � η̃−1

)
=

∫ ∞
0

ρ
(M)
β (y) dy

∫ ∞
−∞

δ

(
Jw −

1

η̃

yx

x2 + (y − η̃)2

)
dx (S27)
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Note that such a density is symmetric: P (Jw) = P (−Jw), so we consider Jw > 0. Solving the delta-functional
constraint for x, we find two values of x contributing:

x1,2 =
1

2

(
y

Jwη̃
∓

√(
4− 1

J2
wη̃

2

)
(y − y+)(y− − y)

)
(S28)

as long as y+ < y < y− where we defined

y± =
η̃

1± 1
2Jw η̃

(S29)

This gives

P
(
|Jw| � η̃−1

)
=

1

2

∫ y−

y+

ρ
(M)
β (y)

(
1

|φ′(x1)|
+

1

|φ′(x2)|

)
dy, φ(x) :=

1

η̃

yx

x2 + (y − η̃)2
(S30)

Note that for Jwη̃ � 1 the width of the integration domain over y is much smaller than the typical values y ∼ η̃ as
y− − y+ ≈ 1

Jw
� η̃. Using this and exploiting the relation J = φ(x1,2) we can approximate

1

|φ′(x1,2)|
≈ 1

J2
w

x2
1,2∣∣(y − η̃)2 − x2

1,2

∣∣
and in this way arrive to:

P
(
Jw � η̃−1

)
≈
ρ

(M)
β (η̃)

2J2
w

(I1 + I2) , I1,2 =

∫ y−

y+

x2
1,2∣∣(y − η̃)2 − x2

1,2

∣∣ dy (S31)

where x1,2 ≈ y
2Jw η̃

±
√

(y − y+)(y− − y). Evaluation of the two integrals goes in a similar way, so we consider only

I1 =

∫ y−

y+

(
y

2Jw η̃
+
√

(y − y+)(y− − y)
)2∣∣∣(y − η̃ − y

2Jw η̃
−
√

(y − y+)(y− − y)
)(

y − η̃ + y
2Jw η̃

+
√

(y − y+)(y− − y)
)∣∣∣ dy

We first change variables as y = y+ + (y− − y+)t, 0 < t < 1 and use that for Jwη̃ � 1 we can write

y+

2Jwη̃
≈ 1

2Jw
, y+ − η̃ −

y

2Jwη̃
≈ 0, y+ − η̃ +

y

2Jwη̃
≈ 1

Jw
, y− − y+ ≈

1

Jw

Applying the above systematically and keeping only the leading order one finds after further algebraic manipulations
that

I1 ≈
1

Jw

∫ 1

0

(
1
2 +

√
t(1− t)

)2

√
t(1− t

(√
t+
√

1− t
)2 dt

The integral is well-defined and convergent and yields some positive constant whose value is however immaterial for
us (in fact, substituting t = sin2 α, α ∈ (0, π/2) brings it to a nice form). We therefore conclude that asymptotiucally
both I1 and I2 are proportional to the factor J−1

w which finally implies the tail formula:

P
(
|Jw| � η̃−1

)
≈ const×

ρ
(M)
β (η̃)

2J3
w

(S32)

III. SIGN CONVENTION FOR THE PHASE EVOLUTION OF THE S-MATRIX ELEMENTS

It should be noted that there are two widely-used conventions for the evolution of the phase of the complex S-
matrix elements with increasing frequency. Microwave network analyzers utilize a convention in which the phase of the
scattering matrix elements decreases with increasing frequency. Here we adopt the convention used in the theoretical
literature that the phase of S-matrix elements increases with increasing frequency.
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IV. RANDOM MATRIX THEORY SIMULATION AND TIME DELAY DISTRIBUTIONS

In this section, we utilize numerical data from the Random Matrix Theory (RMT) simulation to further examine the
theory presented in this paper, and provide more insights for discussion. The RMT data is generated using Random
Matrix Monte Carlo simulation [7].

FIG. S1. Evolution of the PDF of simulated Re[τW] with increasing uniform attenuation (η̃) from an ensemble of two-port
(M = 2) GUE (β = 2) RMT numerical data. The upper figure is the linear-linear plot of the distribution of Re[τW], while the
lower one is the log-log version of the same data. Inset (a) and (b) show the zoom-in view of the PDFs for different attenuation
values, and the mean value of Re[τW] is 0.0081 at η̃ = 125.66. Inset (c) shows the whole PDF of the positive Re[τW] in log-log
scale for η̃ = 125.66. The reference lines are added in the log-log plot to characterize the power-law tail features of the PDFs.

Figs. S1 and S2 show the evolution of the PDF of simulated complex Wigner time delay Re[τW] and Im[τW] with
increasing uniform attenuation (η̃) from an ensemble of GUE RMT numerical data, respectively. The upper figure in
Fig. S1 is the linear-linear plot of the PDFs, while the lower figure shows the log-log plot of the PDFs. The zoom-in
view in Fig. S1(a) shows the detailed evolution of PDF of Re[τW] as the uniform attenuation increases, while Fig.
S1(b) shows the distribution of Re[τW] will concentrate around its mean value (0.0081) at a large η̃ setting (strong
uniform attenuation in the system). Figure S1 shows that the peak of the PDF shifts to lower Re[τW] values as the
uniform attenuation increases, and Re[τW] starts to acquire negative values – the same behavior we have seen in the
main text from the experiment. Both positive and negative sides of the PDF have a power-law tail in the log-log view of
Fig. S1. When the uniform attenuation η̃ is zero or small, we have P(Re[τW]) ∝ 1/Re[τW]4 for the tail on the positive
side; and as soon as the attenuation increases, the tail distribution becomes P(Re[τW]) ∝ 1/Re[τW]3, consistent with
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FIG. S2. Evolution of the PDF of simulated Im[τW] with increasing uniform attenuation (η̃) from an ensemble of two-port
(M = 2) GUE RMT data. (a) shows the PDFs of Im[τW] in a log-linear scale, while (b) shows the PDFs of |Im[τW]| in a log-log
scale. The reference lines are added in the log-log plot to characterize the power-law tail feature of the PDFs.

the theory in section II. The negative side of the PDFs always show a power-law tail of P(Re[τW]) ∝ 1/Re[τW]3.

FIG. S3. Probability distributions ρ(y) of scaled resonance width y (y = πΓn/∆) for different numbers of scattering channels
(M) and variable coupling strength (g) in the GUE lossless setting. Panels (a)–(c) show the probability distributions of the
scaled resonance width with different coupling settings (g = 1, 2, 3 and 4) for M = 1, 2, and 3, respectively. (d) shows the
comparison between the probability distributions for different numbers of scattering channels (M = 1, 2, and 3) at perfect
coupling setting (g = 1).
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FIG. S4. Mean of simulated Re[τW] as a function of uniform attenuation η̃ with variable coupling strength (g) evaluated using
ensembles of one-port (M = 1) GUE RMT numerical data. The markers are RMT data, while the red lines are theoretical
predictions. Inset (a) shows the zoom-in details of the plot at small attenuation values. Inset (b) and (c) are the linear-log
scale and log-log scale of the plot, respectively.

FIG. S5. Mean of simulated Re[τW] as a function of uniform attenuation η̃ with variable coupling strength (g) evaluated using
ensembles of two-port (M = 2) GUE RMT data. The markers are RMT data, while the red lines are theoretical predictions.
Inset (a) shows the zoom-in details of the plot at small attenuation values. Inset (b) and (c) are the linear-log scale and log-log
scale of the plot, respectively.

Fig. S2(a) shows the log-linear plot of the PDFs of Im[τW], while Fig. S2(b) shows the log-log plot of the PDFs
of |Im[τW]| (the distributions of Im[τW] are symmetrical on the positive and negative sides). In Fig. S2(a), the PDF
starts from a δ-function in the lossless case, and it expands and then shrinks around the peak value (0) as η̃ increases.
Fig. S2(b) shows the power-law tail feature of the PDF, and reference lines are added which is consistent with the
theory prediction in in section II.

We also demonstrate the correctness of the theory for variable coupling settings using the RMT simulation. Fig.
S3 shows the probability distributions of the resonance width Γn for different numbers of scattering channels (M) and
variable coupling strength (g) in the GUE lossless setting, where y = πΓn/∆ is the scaled resonance width. Panels
(a)–(c) demonstrates that the peak of the ρ(y) distribution shifts to lower values as g goes up, which indicates that
the majority of the poles of the S-matrix are closer to the real axis in the lossless case when the coupling becomes
weaker. Fig. S3(d) clearly demonstrates that the one-port (M = 1) case is very different from the other multi-port
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cases. Figs. S4 and S5 examine the theory further using ensembles of one-port (M = 1) and two-port (M = 2)
GUE RMT data of variable uniform attenuation (η̃) with different coupling settings (g), respectively. The RMT data
results are directly compared to the theory predictions calculated using the probability distribution functions shown
in Fig. S3, and they agree quite well.

V. ESTIMATION OF LOSS PARAMETER α AND ERROR BARS

In the experiment, each frequency band is chosen to have a large number of modes (approximately 40) but small
enough so that the uniform attenuation value is approximately constant. A total of 84 realizations of the graphs were
created, and the data was broken into 7 frequency bands of approximately equal attenuation.

In Fig. 3 of the main text, we plot the data points for the mean of the Re[τW] vs loss with error bars. The
vertical error bars are determined by the statistical binning error σ ∼ 1√

Nensemble×Nmode
, where Nensemble is the

number of realizations in one ensemble, and Nmode is the number of resonant modes in one realization, such that
Nensemble×Nmode is the total number of modes studied in one ensemble data set. The horizontal error bar is estimated
from the fitting process in calculation of the system loss parameter α. The loss parameter α is defined as the ratio of
the typical 3-dB bandwidth of the resonant modes to the mean mode-spacing, and it can be written as α = Le

2πcτ in
the case of graph systems, where Le is the total electrical length of the graph, c is the speed of light in vacuum, and
τ is the energy decay time for the system. The energy decay time τ is obtained from the power decay profile (see Fig.
S6(a)) by inverse Fourier transforming the RCM-normalized measured data for det[S] to the time domain. By fitting
to the linear portion of the ensemble average power decay profile (black line), one can get the slope and the decay
time τ can be computed by τ = −1/(2 ∗ slope). Fig. S6(b) shows the estimation of error bars for the decay time τ .
The fitting process in Fig. S6(a) gives the sample dataset (xi, yi), i = 1, 2, ..., N and linear function y = kx + b for

extracting the decay time τ . Here we define an error function ε(k) = min
{∑

i (yi − (kxi + b))
2
}

. It is easy to prove

that ε(k) =
∑
i(yi − kxi)2 − 1

N (
∑
i(yi − kxi))

2
. By varying the decay time τ , we can get different values of the slope

k and plot the error function ε(τ) as a function of the decay time τ (see Fig. S6(b)). The minimum error function
determines the best decay time τ and we use an error level of 1.05 to estimate the error bar [τ−, τ+] of decay time τ .
The error bars of the decay time τ will then be transferred to the attenuation parameter η̃ = 4πα = 2Le

cτ , and plotted
as the horizontal error bars in Fig. 3 in the main text.

FIG. S6. (a) shows the fitting process of the inverse Fourier transformed det[S] data to the time domain. Multi-color lines show
the data from each realization, and the black line is the average of all realizations. The red line shows the linear fit. (b) shows
the error bar estimation for the decay time τ . Blue dotted line shows the error function ε(τ) vs the decay time τ . The lower
red dashed line shows the minimum level of the error function, and the upper red dashed line shows the 1.05×minimum level.
The cross points of the upper red dashed line with the blue line give the error bar [τ−, τ+] for the decay time τ .
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VI. TIME-REVERSAL INVARIANCE BREAKING IN GRAPHS BY MICROWAVE CIRCULATOR

FIG. S7. Figure shows differences between S12 (yellow line) and S21 (purple line) vs frequency in a tetrahedral microwave
graph containing a circulator on one internal node of the graph. In the working frequency range (1− 2 GHz) of the microwave
circulator, the two transmission parameters do not agree, neither in amplitude (upper plot) nor in phase (lower plot).

The issue of time-reversal invariance breaking (TRIB) is a bit subtle. It is widely believed that attenuation and
dissipation in a wave propagation medium serves to break TRI. However, if one could manage to reverse all the
microscopic degrees of freedom involved in dissipation, one could restore the full time-reversed propagation of the
waves. In a scattering experiment time-reversal can be effectively accomplished simply by interchanging ports of the
system.[8] In other words, showing that Sab 6= Sba is direct proof that TRI is broken in the scattering system. A
scattering system that suffers from dissipation/loss alone will still have a symmetric scattering matrix (Sab = Sba),
in general. The property of non-reciprocal wave propagation is precisely what the microwave circulator in our graph
delivers, and the degree of non-reciprocity is quantified below. The microwave circulator (which contains a ferrite
material biased by a dc magnetic field) creates a situation for the microwave signals that is directly analogous to the
application of a magnetic field to the motion of a charged particle.[9] If we consider reversing the direction of time for
wave propagation, but the magnetic field direction is not reversed, the waves will follow different trajectories when
propagating through the system upon reversal of time. This effect puts the system into the unitary universality class.

We introduce microwave circulators to the graph experiments to break the time-reversal invariance of the system
[10]. From the schematic insets of Fig. 3 in the main text, we have one internal node of the graph being replaced by
a microwave circulator. This non-reciprocal device brings differences to the two transmission (S12&S21) parameters
of the system, which is demonstrated in Fig. S7. In order to quantitatively evaluate the degree of time-reversal
invariance breaking, we use the definition of time-forward and time-reversed transmission asymmetry [8] to perform
the analysis:

ã =
S12 − S21

|S12|+ |S21|
(S33)

This function has an absolute value from 0 (no symmetry breaking) to 1 (maximum symmetry breaking). Fig.
S8 shows an example of the asymmetry function analysis on experimental data from a realization of the tetrahedral
microwave graph (M = 2) with circulator. The asymmetry ã shows strong fluctuations as a function of frequency,
but the magnitude of ã is close to 1 for many of the frequencies. The asymmetry plot in other frequency ranges
shows similar behaviors. It is then well demonstrated that one circulator in such a graph setup has a satisfactory
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FIG. S8. Figure shows the time-reversal transmission asymmetry function ã vs frequency in a microwave graph with circulator
(1− 2 GHz). Upper plot shows the magnitude of ã vs frequency, and lower plot shows the phase of ã vs frequency.

time-reversal invariance breaking effect.
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